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The unexpected connection between cilia and signaling is one of

the most exciting developments in cell biology in the past decade.

In particular, the Hedgehog (Hh) signaling pathway relies on the

primary cilium to regulate tissue patterning and homeostasis in

vertebrates. A central question is how ciliary localization and

trafficking of Hh pathway components lead to pathway activation

and regulation. In this review, we discuss recent studies that

reveal the roles of ciliary regulators, components and structures in

controlling the movement and signaling of Hh players. These

findings significantly increase our mechanistic understanding of

how the primary cilium facilitates Hh signal transduction and form

the basis for further investigations to define the function of cilia in

other signaling processes.
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Introduction
The Hedgehog (Hh) signaling pathway (Figure 1) plays a

key role in tissue patterning and homeostasis in diverse

species [1–8]. A striking feature of Hh signaling is its

reliance on the primary cilium for signal transduction

[9,10]. The antenna-like primary cilium is present in

most mammalian cells and approximately 800 ciliary

proteins have been identified [11,12]. Ciliary assembly

begins when a pair of centrioles docks at the apical plasma

membrane in quiescent or interphase (G1 phase) cells

[13–16]. The mother centriole is converted to the basal

body to initiate the formation of the 9+0 axoneme, typical

of the nonmotile primary cilium (Figure 2). The axoneme

is built from nine peripheral microtubule doublets in a

cylindrical array through intraflagellar transport (IFT)

that involves kinesin-based anterograde and dynein-pow-

ered retrograde transport [17–19]. Ciliary protein entry

and exit is believed to be regulated by a barrier or gate at
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the ciliary base that encompasses the transition zone at

which the triplet microtubules of the basal body transition

to the doublet microtubules of the ciliary axoneme [20,21]

(Figure 2). The ciliary membrane of the transition zone

likely corresponds to the ciliary necklace, a region of

multiple rows of intramembranous particles where the

plasma membrane meets the ciliary membrane [22–24]

(Figure 2). Many other regulatory processes, including

the trafficking of membrane and soluble proteins, could

interact with this specialized zone. It is proposed that the

unique microenvironment maintained within the primary

cilium enables efficient molecular interactions and thus

facilitates the process of signal transduction initiated by

external stimuli. Many regulatory or structural proteins of

the cilium are expected to modulate or transduce the

signals received from the extracellular environment.

Among the major signaling pathways, the relationship

between Hh signaling and the primary cilium is best

understood [4,25]. The Hh signaling pathway initiates

a signal transduction cascade upon Hh ligand binding to

its twelve-pass transmembrane receptor Patched (Ptc/

Ptch/Ptch1), relieving Ptch1 inhibition on another

multi-pass membrane protein Smoothened (Smo). Hh/

Ptch1 interactions lead to Ptch1 internalization [26] and

reduced intensity on the cilium [27]. Concomitant with

these changes, mammalian Smo accumulates on the

primary cilium [28]. Increased ciliary Smo levels are

associated with activation of Gli transcription factors

and expression of nuclear Hh target genes (Figure 1).

Suppressor of fused (Sufu) and kinesin Kif7 are two key

regulators of mammalian Hh signaling and mediate signal

transduction between membrane receptors and transcrip-

tional activators [29–33]. Both Sufu and Kif7 localize to

the primary cilium in a dynamic manner [31,33,34],

consistent with their proposed functions on the cilium.

Interestingly, Fused (Fu), a putative serine-threonine

kinase initially identified as a key player of fly Hh

signaling, turns out to be dispensable for mammalian

Hh signaling and instead is required for ciliogenesis of

9+2 motile cilia [35]. This highlights the divergence of

Hh pathway design in different species [36]. Investigating

the relationship between co-option of the cilium in

vertebrate Hh signaling and rewiring of the Hh circuitry

during evolution will shed light on how essential cellular

processes acquire new properties. Importantly, mutations

that disrupt the structure of the cilium or centrosome

often result in dysregulation of the Hh pathway and

underlie a subset of cilia-related human pathologies or
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Figure 1
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The mammalian Hh signaling pathway. (a) In the absence of the Hh ligand, the Hh receptor Patched (Ptch1) inhibits the accumulation of the signal

transducer, Smoothened (Smo), on the ciliary membrane. As a result, at the base of the primary cilium, PKA and Kif7 promote proteolytic processing of

the transcription factor Gli3 by the proteasome into a repressor form (GliR) that suppresses Hh target gene expression in the nucleus. In addition, Sufu

stabilizes the Gli proteins and inhibits the transcriptional activity of Gli2, while PKA prohibits the accumulation of full-length Gli2 (GliFL) in the cilium. All

of these events ensure silencing of the Hh pathway without the ligand. (b) The Hh ligand binds to its receptor Ptch1 and co-receptors Boc/Cdon. Ptch1

is internalized with Hh, relieving the inhibition on Smo. Smo accumulates in the ciliary membrane through both lateral transport and the secretory

pathways. Phosphorylation of Smo, for instance, at the EvC zone in osteoblasts leads to its dimerization and activation. This in turn abrogates PKA

function and promotes the movement of Sufu–Gli2/3 complexes and Kif7 to the ciliary tip and perhaps dissociation of Gli2/3 from Sufu in this process.

Kif7 also facilitates the trafficking of Gli2/3 into the cilium (e.g. in chondrocytes). Accumulation of Gli2/3 at the ciliary tip is associated with the

production of Gli activators (GliA), which are derived from the full-length Gli proteins. Accumulation of GliA to the nucleus enables activation of Hh

target genes such as Ptch1, Gli1 and Hhip1.
ciliopathies [37,38]. Elucidating the molecular mechan-

isms by which the primary cilium controls Hh signaling

will provide a better understanding of disease mechan-

isms and offer potential targets for therapies.

Multiple machineries that regulate localization
and accumulation of Hh pathway components
on the primary cilium
Several lines of evidence suggest that protein distribution

on the cilium is controlled by multiple mechanisms.

Proteins involved in various aspects of ciliary construction

and function have been shown to affect the movement and

accumulation of Hh pathway components. For instance,

the machinery that regulates membrane or soluble protein

trafficking could influence ciliary distribution of Hh com-

ponents. In addition, the base of the cilium anchors a ciliary

gate above the basal body that mediates the exchange of

molecules in and out of the cilium. The transition zone

makes up most of the gate and a large number of proteins

and complexes in this region have overlapping and distinct
Current Opinion in Genetics & Development 2013, 23:429–437 
functions in determining the rate and destination of

proteins traversing this region (Figure 2). These transition

zone-mediated events will contribute in a major way to

maintaining the unique microenvironment of the cilium. A

key challenge is to identify the list of proteins controlled by

each mechanism and elucidate the functional connections

between these systems.

Distribution of ciliary membrane proteins is regulated

partly through a diffusion barrier at the base of the cilium

[39�]. The septin family of guanosine triphosphatases

(GTPases) located at the ciliary base confers important

properties of the barrier. Loss of Septin2 limits Smo

accumulation in the primary cilium and inhibits Hh signal

transduction [39�]. It is unclear whether other Hh com-

ponents are regulated in a similar manner. Surprisingly,

studies have also identified signals that allow plasma

membrane proteins to anchor to the cortical actin cytoske-

leton underlying the plasma membrane, thus excluding

them from the periciliary membrane [40]. This finding
www.sciencedirect.com



An update on Hedgehog signaling and the primary cilium Nozawa, Lin and Chuang 431

Figure 2
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Control of trafficking of Hh components on the primary cilium. (a) The primary cilium is anchored at the plasma membrane through transitional fibers

emanating from the basal body. The ciliary membrane maintains its unique membrane composition through multiple mechanisms including a diffusion

barrier surrounding the ciliary base. Ciliary proteins pass through the ciliary gate to enter and exit the cilium. The ciliary gate is mostly made up of the

transition zone. This specialized region is characterized by Y-shaped links that demarcate the ciliary necklace and connect the axoneme to the ciliary

membrane. Septin ring and a nuclear pore-like structure also contribute to the ciliary diffusion barrier at its base. The transition zone contains several

protein complex networks that function in ciliary assembly and sorting. For instance, transition zone proteins Tectonic 1 and 2 participate in targeting Smo

and Arl13b to the primary cilium in some cell types. Septin appears to confer important barrier properties at the ciliary base and is known to control Smo

trafficking. An intraflagellar transport (IFT) system is responsible for ciliary construction and maintenance. It consists of the IFT particles (A and B

complexes) that are moved along the axoneme through their interactions with the anterograde (kinesin II) and retrograde (dynein 2) motors. IFT is known to

be involved in Hh signal transduction. Several components of the IFT complexes have been shown to influence the distribution of Hh components on the

cilium and affect Hh signaling in a complex manner. For instance, disruption of IFT139 (THM1)/IFT122 in IFT A complex or IFT25 in IFT B complex both

leads to accumulation of Hh components on the cilium but Hh signaling is enhanced in Thm1/Ift122 mutants while it is reduced in Ift25 mutants. The coat-

like BBSome complex is involved in the trafficking of molecules between the plasma and ciliary membrane and may contribute to the dynamic ciliary

distribution of Smo and Ptch1. Taken together, these studies highlight the fact that multiple mechanisms regulate ciliary protein distribution and

understanding how they interact to control Hh component distribution and signaling on the cilium is a key unresolved issue. (b) Summary of changes in

ciliary distribution of Hh pathway components and Hh pathway activity in various mutants that affect ciliary structure and function.
suggests that complementary mechanisms may be utilized

for transporting different classes of proteins or redundant

mechanisms could be used for the same proteins [41].

Proteins encoded by genes found to be associated with

human nephronophthisis (NPHP), Joubert (JBTS), and
www.sciencedirect.com 
Meckel–Gruber (MKS) syndrome form a few large com-

plexes. They are involved in apical organization and cilia

integrity consistent with their distinct subcellular distri-

butions. Some of the complexes localize to the transition

zone and mutations in homologs of these components

result in alterations in ciliary protein composition,
Current Opinion in Genetics & Development 2013, 23:429–437
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suggesting their role in imparting ciliary gate function

[42�,43�,44]. Interestingly, MKS proteins physically inter-

act with the Tectonic family of proteins (Tectonic 1–3)

and this complex colocalizes at the transition zone

[42�,45��]. Recent studies [42�,45��] demonstrated that

Tectonic 1 and 2 (Tctn1, Tctn2) are required for proper

ciliogenesis in some tissues and the maintenance of the

ciliary membrane. Mouse knockouts of Tctn1 or Tctn2
exhibit tissue-specific defects in Hh signaling, which are

associated with reduced ciliary localization of Smo and

Arl13b [46]. Perhaps Smo interactions with the transition

zone facilitate its entry into the cilium. Endeavors to

define the molecular process of Smo trafficking will

uncover new protein–protein interactions that contribute

to communications between the cilium and other sub-

cellular compartments or membrane domains.

The BBSome comprises seven highly conserved Bardet–
Biedl syndrome (BBS) proteins and one novel protein,

which function as a coat complex to transport membrane

proteins between the plasma and ciliary membrane.

Notably, overexpressed Smo or Ptch1 physically interacts

with several BBS proteins with BBS1 showing the stron-

gest binding [47�]. Loss of the BBSome components leads

to increased accumulation of Smo and Ptch1 in cilia

although Hh response is reduced in assays conducted

in mouse embryonic fibroblasts [47�,48]. This phenotype

is reminiscent of that observed in Dync2h1 mutants [49��]
and raises the possibility that Smo may fail to exit the

cilium efficiently in the absence of the BBSome. Alter-

natively, the BBSome may participate in the exit of Ptch1

from the cilium or in the conversion of Smo into an active

state. A genetic interaction between the BBSome and

IFT proteins in mammalian cilia is revealed by more

embryonic phenotypes in Ift88/Bbs7 double mutants than

single mutants [47�]. By contrast, no physical interactions

are detected between the BBSome and the NPHP/JBTS/

MKS complex [42�]. Biochemical assays and cell bio-

logical studies are required to reveal how the BBSome

regulates Smo/Ptch1 translocation between the plasma

membrane and ciliary membrane and how the BBSome

functionally interacts with other protein complexes in this

process. Since mice lacking the BBS genes do not exhibit

the classical Hh defects, the BBSome likely modulates

the transport of Hh components in conjunction with other

machineries.

Similarities between the ciliary localization signal (CLS)

and the classic nuclear localization signal (NLS) support

the idea that analogous mechanisms could regulate nuclear

and ciliary import [50�]. In this model, the cilium contains a

selective transport system at its base similar to that in the

nuclear pore. This notion is reinforced by the discovery

that manipulation of Ran GTPase activity, known to con-

trol the NLS–importin complex, also affects Kif17 trans-

location to the cilium [50�]. Moreover, both nucleoporins

and importins that control nuclear entry localize to the
Current Opinion in Genetics & Development 2013, 23:429–437 
ciliary base, and inhibition of these proteins blocks the

ciliary entry of kinesin-2 and Kif17 motor proteins

(Figure 2) [51��]. Whether this system regulates transport

of Hh pathway components has not been reported. Like-

wise, elucidating the connection between this system and

others such as IFT and the transition zone will provide new

insight into protein trafficking on the cilium.

Trafficking of Hh pathway components on the
primary cilium
A major event associated with active Hh signaling is the

increased levels of various Hh components along the

primary cilium or in a ciliary subdomain. Hh ligand

binding to its membrane receptor Ptch1 results in a

dramatic reduction in Ptch1 intensity on the cilium

[27] and a concomitant increase of ciliary Smo levels

[28]. This is consistent with a model in which exit of

Hh-bound Ptch1 from the cilium allows Smo entry to the

cilium. As discussed in this review, studies that manip-

ulate retrograde ciliary transport or other machinery

revealed increased Smo levels on the cilium without Hh

ligand stimulation [52,53]. This suggests the presence of

dynamic movements of Ptch1 and Smo in the cilium even

in the absence of active Hh signaling. Our knowledge of

this important process remains limited due to the inability

to follow the movement of Hh components in real time and

at physiological levels. Moreover, reagents currently avail-

able to detect ciliary distribution of Hh components do not

yield the spatial resolution required to define their distri-

butions in subdomains of the cilium. A key unresolved

issue is how to design assays to probe the functional con-

sequences of trafficking of Hh components on the cilium.

Despite these deficiencies, recent studies of ciliary regu-

lators and components have uncovered multiple mechan-

isms that control the movement of Hh players.

The axoneme is assembled via IFT that consists of kine-

sin-mediated anterograde and dynein-powered retrograde

transport. It is proposed that disruption of IFT perturbs

cilia architecture that subsequently leads to altered sig-

naling [49��,54]. Inactivation of retrograde transport, for

instance, by mutating the cytoplasmic dynein-2 motor heavy
chain protein 1, Dync2h1, swells the cilium due to an

increased amount of ciliary proteins. Indeed, Smo, Ptch1

and Gli2 levels are also elevated in the cilium. Retention of

Hh signal transducers on the cilium caused by defective

retrograde transport could impair Hh signal transduction

downstream of the cilium and result in reduced Hh sig-

naling [49��]. Unexpectedly, defective retrograde transport

originating from mutations in either Ift122 or Thm1 (Ift139)

also results in accumulation of Hh components on the

cilium but Hh signaling is enhanced, implying a different

underlying mechanism [55,56]. It is possible that in Ift122
or Thm1 mutant cilia, amassed Hh components may have

undergone constitutive activation at a particular ciliary

subdomain due to aberrant retrograde transport. A role

of IFT in transporting Hh components is also revealed
www.sciencedirect.com
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through analysis Ift25 mutant mice. Loss of Ift25 does not

affect ciliary assembly but leads to increased Ptch1 and

Smo levels on the cilium [57�]. This leads to the hypothesis

that IFT25 is required not only for ciliary export of Smo

during the inactive state but also for Ptch1 export during

the active state. Since Hh components contain multiple

positive and negative effectors, defective IFT could pro-

duce a complex output depending on the extent to which

individual Hh component is affected by a specific combi-

nation of genetic perturbations.

Hh signal relay from the primary cilium to the
nucleus
Several Hh pathway components function downstream of

Smo to transduce the Hh signal in the cilium, cytoplasm

and the nucleus. They include Sufu, Kif7, protein kinase

A (PKA) and three Gli transcription factors (Gli1-3).

These Hh players exhibit a complex interaction to gen-

erate graded Hh responses through a combination of

positive and negative regulations. Uncovering the bio-

chemical mechanisms that underlie the interactions of Hh

components and identifying the location and sequence of

actions will provide new insight into how Hh signaling

controls key biological processes.

In the absence of Smo activation, the majority of Gli3

undergoes limited proteolysis mediated by the proteasome

to produce a transcriptional repressor (GliR) that blocks Hh

target gene expression in the nucleus. Upon Hh pathway

activation, GliR formation is inhibited and Gli activators

(GliA) derived from the full-length Gli proteins (primarily

Gli2) are produced and stimulate Hh target gene expres-

sion in the nucleus (Figure 1). Smo accumulation on the

primary cilia is accompanied by increased Gli protein

localization to cilia tips and the nucleus [53,58��].

Smo trafficking and activation on the primary cilium

Besides the ciliary gate that limits Smo diffusion, another

distinct domain on the cilium has been identified recently

that orchestrates Smo activity and movement. In Hh-

responsive cells, the ciliary proteins Evc and Evc2 localize

to a region lying above the transition zone and act down-

stream of Smo to relay the Hh signal to a subsequent step

that involves Sufu/PKA [59��,60–62]. Importantly, the

exogenous Evc/Evc2 complex was found to colocalize with

Smo within the EvC-expressing zone and can also physically

associate with Smo (at least with crosslinker) in response to

Hh pathway activation. It is postulated that activation and

conformational change of Smo takes place in this distinct

Evc/Evc2(+) domain on the cilium [59��]. Consistent with

this model, the Evc complex is disrupted in human Ellis–
van Creveld syndrome and Weyers acrodental dysostosis,

two ciliopathies characterized by skeletal dysplasia [63].

However, the limited tissue expression of Evc/Evc2 and

the mild phenotypes associated with Evc/Evc2 mutations in

mammals raise the question of whether Evc/Evc2 merely

represent a tissue-specific mode of Hh regulation.
www.sciencedirect.com 
PKA controls Gli protein function via the primary cilium

cAMP-dependent protein kinase A (PKA) is a major

negative regulator of Hh signaling in various overexpres-

sion studies in vitro and in vivo. PKA localizes to the base

of the primary cilium, adjacent to the centrosome marker

[64,65��] and in proximity to the proteasome and the

Skp1-Cul1-F-box (SCF) protein ligase complex [66,67].

New insight into how PKA controls Gli2 and Gli3 activity

in relation to the cilium was garnered by the production of

mice in which PKA is genetically ablated. Embryos lack-

ing PKA activity exhibit full activation of Hh signaling

[65��], placing PKA in the same category as Ptch1 based

on their ability to repress Hh signaling. This system also

offers a pertinent genetic setting to examine the molecu-

lar mechanisms by which PKA controls Hh signaling.

Analysis of neural tube patterning in PKA-deficient mice

reveals a major function of PKA in repressing Gli2 acti-

vator production. Moreover, when the primary cilium is

disrupted in a PKA-deficient background, Hh signaling

fails to be activated, suggesting that inhibition of Hh

signaling by PKA is dependent on primary cilia [65��].
While PKA does not affect Smo ciliary localization, Gli2 is

enriched in PKA-deficient cilia tips even in the absence of

Hh stimulation [65��]. These results argue that regulation

of Gli2 and Gli3 by PKA at the cilium base is a crucial

event in controlling Gli activity and trafficking. The exact

site and sequence of action cannot be deduced from the

current knowledge and would require a better molecular

characterization of the biogenesis and movement of the

different forms of Gli. Interestingly, identification of a

ciliary G-protein-coupled receptor, Gpr161, which can

increase cAMP levels and Gli3 processing, provides a

link between Hh signaling and PKA activity [68].

Multiple roles of Sufu in Hh signaling

Suppressor of Fused (Sufu) is another major negative

regulator of mammalian Hh signaling. Genetic studies

have shown that the Hh hyperactivation in Sufu knockout

neural tube depends on the enhanced activator activity of

Gli1/2 and to a lesser extent decreased levels of Gli3

repressor [69–71]. Furthermore, cell-based studies have

unveiled a positive role of Sufu in Hh signaling, likely due

to the involvement of Sufu in maintaining sufficient Gli

protein levels that are necessary for activator production

[72]. This idea is further strengthened by genetic analysis

in the mouse neural tube. Removal of Sufu in Gli1
mutants results in failure to specify the ventral-most cell

types in the spinal cord (such as the floor plate and V3

interneurons) that require maximal Hh signaling activity

[70]. By contrast, Gli1 mutant mice are viable with no

apparent neural tube defects [73].

Upon Hh pathway activation, Sufu accumulates in the

primary cilium, a process that relies on the presence of

ciliary Gli2/3 [74,75��]. Treatment with forskolin, which

activates PKA by raising cellular cAMP levels, abolishes

ciliary localization of Gli2/3 and Sufu [75��]. Surprisingly,
Current Opinion in Genetics & Development 2013, 23:429–437
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forskolin can also block constitutive accumulation of Gli2

at the cilia tips in PKA-deficient cells [65��]. This suggests

that the negative effects of forskolin on ciliary transloca-

tion of Gli2/3 and Sufu and Hh signaling could be

independent of PKA activity. For instance, forskolin

may affect the cilium environment through the action

of cAMP-gated channels unrelated to PKA [76,77]. More-

over, forskolin-induced Smo translocation to the cilium

base [78] does not occur in PKA-deficient cells. These

findings underscore the importance of genetic analysis to

complement cell-based assays [65��].

Sufu inhibits Hh signaling by preventing the conversion

of Gli3 into a transcriptional activator [58��,75��] and by

sequestering Gli2 [79,80]. Recent work also suggests that

Hh signaling triggers dissociation of Sufu from full-length

Gli2/Gli3 [58��,75��]. This would lead to the production

of a labile form of active Gli proteins that accumulate in

the nucleus to stimulate Hh target gene expression. In

Kif3a�/� cells, in which the primary cilium fails to form,

Sufu does not dissociate from Gli2/3 upon treatment of a

Smo agonist (SAG). This observation bolsters the claim

that dissociation of Sufu and Gli2/3 upon Hh activation

depends on the primary cilium and that Sufu/Gli dis-

sociation may take place in the primary cilium [58��,75��].
Since the absence of Sufu/Gli dissociation without the

cilium could be due to lack of Smo activation, the exact

location and relevance of Sufu–Gli dissociation during Hh

signal transduction cannot be unambiguously assessed.

This issue is further complicated by the finding that Sufu

still exerts its full effects on Gli proteins in the absence of

primary cilia [69,72]. A recent study reported impaired

Sufu dissociation from Gli2 in Kif7-deficient keratino-

cytes but this results in a relatively mild Hh phenotype

[79]. All of these point to the importance of testing the

functional consequences of Sufu–Gli association and dis-

sociation.

Kif7’s dual function on Hh signaling depends on the

primary cilium

Kif7 plays both positive and negative roles in Hh sig-

naling. Kif7 primarily localizes to the base of the primary

cilium in the absence of Hh signaling, but is enriched at

the ciliary tip when the Hh pathway is activated [31,33].

Consistent with its localization, Kif7 activity depends on

the presence of an intact primary cilium [31], similar to

the requirement of the primary cilium for PKA activity

[65��], but is distinct from the unaltered Sufu phenotype

without cilia [69,72]. Kif7-deficient embryos exhibit

defects related to decreased levels of Gli3 repressor

and enhanced activity of Gli2 activator, although the

phenotype is mild [31–33] in comparison with that in

PKA-deficient [65��] or Sufu-deficient embryos [29,30]. A

reduction of Gli3 repressor levels in Kif7 mutants [31–33]

suggests that Kif7 controls Gli3 repressor formation. Since

PKA, the proteasome, the SCF E3 ligase components and

Sufu all participate in Gli3 repressor formation [58��,81],
Current Opinion in Genetics & Development 2013, 23:429–437 
it is possible that they act in concert to control the pro-

duction of Gli3 repressor. One can speculate that Sufu–
Gli3 may be modified in the cilium through Kif7, rendering

Gli3 a better substrate for partial proteolysis. This allows

subsequent PKA phosphorylation of Gli3 at the ciliary base

and targets Gli3 for ubiquitination and processing by the

proteasome [65��]. The molecular basis of cilium control of

Gli3 repressors requires additional studies.

Kif7’s positive effect on Hh signaling contributes to floor

plate patterning, which needs maximal Hh signaling

activity. Removal of Kif7 in a Sufu-deficient background

has no consequences on ectopic formation of floor plate

observed in Sufu mutant embryos [82�]. This could be

interpreted by a model in which Kif7 executes its positive

function by inhibiting Sufu. Alternatively, Kif7 and Sufu

could act in parallel to control Hh signaling. In this case,

removal of Kif7’s positive function fails to counteract

global Hh activation due to loss of Sufu. In Kif7 mutant

chondrocytes, ciliary localization of Gli2/3 and Sufu is

increased. This phenotype resembles that in PKA
mutants and suggests that Kif7 may restrain Gli2/3 from

translocating to cilia tips [83�]. Similarly, the molecular

mechanisms by which Kif7 controls Gli2/3 trafficking and

the functional consequences remain unclear.

The dual function of Kif7 is reminiscent of its Drosophila

ortholog Costal 2 (Cos2). Cos2 promotes repressor for-

mation of Ci (Gli ortholog) by scaffolding kinases for Ci

phosphorylation in the absence of the Hh ligand; Cos2

also exerts a positive function through its association with

active Smo to relay the Hh signal [7]. The primary cilium

may have assumed the scaffolding role of ancient Cos2.

Whether the requirement of Cos2/Smo association to

transduce the Hh signal is substituted by other proteins

in mammals awaits further investigation.

Conclusion
Hedgehog signaling is a central developmental pathway

uniquely tied to primary cilium function. Future studies

that focus on live imaging, functional assays and pheno-

typic analysis will provide insight into how the primary

cilium controls trafficking and activity of Hh components

and discern the direct effects of cilia in these processes.
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